ODE No. 729

\[ y'(x)=\frac {(x-y(x)) y(x)}{x \left (x-y(x)^3\right )} \] Mathematica : cpu = 0.257993 (sec), leaf count = 327

DSolve[Derivative[1][y][x] == ((x - y[x])*y[x])/(x*(x - y[x]^3)),y[x],x]
 

\[\left \{\left \{y(x)\to \frac {\sqrt [3]{2} (-6 \log (x)+6 c_1)}{3 \sqrt [3]{54 x+\sqrt {2916 x^2+4 (-6 \log (x)+6 c_1){}^3}}}-\frac {\sqrt [3]{54 x+\sqrt {2916 x^2+4 (-6 \log (x)+6 c_1){}^3}}}{3 \sqrt [3]{2}}\right \},\left \{y(x)\to \frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{54 x+\sqrt {2916 x^2+4 (-6 \log (x)+6 c_1){}^3}}}{6 \sqrt [3]{2}}-\frac {\left (1-i \sqrt {3}\right ) (-6 \log (x)+6 c_1)}{3\ 2^{2/3} \sqrt [3]{54 x+\sqrt {2916 x^2+4 (-6 \log (x)+6 c_1){}^3}}}\right \},\left \{y(x)\to \frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{54 x+\sqrt {2916 x^2+4 (-6 \log (x)+6 c_1){}^3}}}{6 \sqrt [3]{2}}-\frac {\left (1+i \sqrt {3}\right ) (-6 \log (x)+6 c_1)}{3\ 2^{2/3} \sqrt [3]{54 x+\sqrt {2916 x^2+4 (-6 \log (x)+6 c_1){}^3}}}\right \}\right \}\] Maple : cpu = 0.128 (sec), leaf count = 404

dsolve(diff(y(x),x) = y(x)*(x-y(x))/x/(x-y(x)^3),y(x))
 

\[y \left (x \right ) = \frac {\left (-27 x +3 \sqrt {24 c_{1}^{3}-72 c_{1}^{2} \ln \left (x \right )+72 c_{1} \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{\frac {2}{3}}+6 \ln \left (x \right )-6 c_{1}}{3 \left (-27 x +3 \sqrt {24 c_{1}^{3}-72 c_{1}^{2} \ln \left (x \right )+72 c_{1} \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{\frac {1}{3}}}\]