\[ y'(x)=-\frac {y(x)^3}{x (-y(x)+2 y(x) \log (x)-1)} \] ✓ Mathematica : cpu = 23.8351 (sec), leaf count = 490
DSolve[Derivative[1][y][x] == -(y[x]^3/(x*(-1 - y[x] + 2*Log[x]*y[x]))),y[x],x]
\[\text {Solve}\left [-\frac {\sqrt [3]{-2} \left ((-2)^{2/3}-\frac {(1-2 \log (x))^2 \left (-\frac {1}{(2 \log (x)-1)^3}\right )^{2/3} (y(x) (5-4 \log (x))+2)}{2 \sqrt [3]{2} (y(x) (2 \log (x)-1)-1)}\right ) \left (\frac {y(x) (4 \log (x)-5)-2}{\sqrt [3]{2} \sqrt [3]{-\frac {1}{(2 \log (x)-1)^3}} (2 \log (x)-1) (y(x) (2 \log (x)-1)-1)}+(-2)^{2/3}\right ) \left (\log \left (\frac {y(x) (5-4 \log (x))+2}{\sqrt [3]{2} \sqrt [3]{-\frac {1}{(2 \log (x)-1)^3}} (2 \log (x)-1) (y(x) (2 \log (x)-1)-1)}+2 (-2)^{2/3}\right ) \left (\frac {\sqrt [3]{-1} \left (-\frac {1}{(2 \log (x)-1)^3}\right )^{2/3} (1-2 \log (x))^2 (y(x) (4 \log (x)-5)-2)}{y(x) (4 \log (x)-2)-2}+1\right )-\log \left (\frac {y(x) (4 \log (x)-5)-2}{\sqrt [3]{2} \sqrt [3]{-\frac {1}{(2 \log (x)-1)^3}} (2 \log (x)-1) (y(x) (2 \log (x)-1)-1)}+(-2)^{2/3}\right ) \left (\frac {\sqrt [3]{-1} \left (-\frac {1}{(2 \log (x)-1)^3}\right )^{2/3} (1-2 \log (x))^2 (y(x) (4 \log (x)-5)-2)}{y(x) (4 \log (x)-2)-2}+1\right )+3\right )}{9 \left (\frac {(y(x) (4 \log (x)-5)-2)^3}{8 (y(x) (2 \log (x)-1)-1)^3}+\frac {3 \sqrt [3]{-1} (y(x) (4 \log (x)-5)-2)}{2 (1-2 \log (x))^4 \left (-\frac {1}{(2 \log (x)-1)^3}\right )^{4/3} (y(x) (2 \log (x)-1)-1)}+2\right )}=\frac {4}{9} 2^{2/3} \log (x) \left (-\frac {1}{(2 \log (x)-1)^3}\right )^{2/3} (1-2 \log (x))^2+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.522 (sec), leaf count = 70
dsolve(diff(y(x),x) = -y(x)^3/(-1+2*y(x)*ln(x)-y(x))/x,y(x))
\[y \left (x \right ) = \frac {{\mathrm e}^{\RootOf \left (-{\mathrm e}^{\textit {\_Z}} \ln \left (\frac {{\mathrm e}^{\textit {\_Z}}+2}{2 x^{4}}\right )+3 c_{1} {\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+2\right )}}{1+\left (2 \ln \left (x \right )-1\right ) {\mathrm e}^{\RootOf \left (-{\mathrm e}^{\textit {\_Z}} \ln \left (\frac {{\mathrm e}^{\textit {\_Z}}+2}{2 x^{4}}\right )+3 c_{1} {\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+2\right )}}\]