ODE No. 701

\[ y'(x)=\frac {x^4+x^4 \log (x)-2 x^2 y(x)-2 x^2 y(x) \log (x)+y(x)^2+y(x)^2 \log (x)+2 e^x x-2 x-\log (x)-1}{e^x-1} \] Mathematica : cpu = 1.77961 (sec), leaf count = 88

DSolve[Derivative[1][y][x] == (-1 - 2*x + 2*E^x*x + x^4 - Log[x] + x^4*Log[x] - 2*x^2*y[x] - 2*x^2*Log[x]*y[x] + y[x]^2 + Log[x]*y[x]^2)/(-1 + E^x),y[x],x]
 

\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x\frac {2 (\log (K[5])+1)}{-1+e^{K[5]}}dK[5]\right )}{-\int _1^x\frac {\exp \left (\int _1^{K[6]}\frac {2 (\log (K[5])+1)}{-1+e^{K[5]}}dK[5]\right ) (\log (K[6])+1)}{-1+e^{K[6]}}dK[6]+c_1}+x^2+1\right \}\right \}\] Maple : cpu = 9.357 (sec), leaf count = 71

dsolve(diff(y(x),x) = (2*x*exp(x)-2*x-ln(x)-1+x^4*ln(x)+x^4-2*y(x)*x^2*ln(x)-2*x^2*y(x)+y(x)^2*ln(x)+y(x)^2)/(exp(x)-1),y(x))
 

\[y \left (x \right ) = \frac {-x^{2} {\mathrm e}^{\int \frac {2 \ln \left (x \right )+2}{{\mathrm e}^{x}-1}d x}+c_{1} x^{2}+{\mathrm e}^{\int \frac {2 \ln \left (x \right )+2}{{\mathrm e}^{x}-1}d x}+c_{1}}{-{\mathrm e}^{\int \frac {2 \ln \left (x \right )+2}{{\mathrm e}^{x}-1}d x}+c_{1}}\]