[next] [prev] [prev-tail] [tail] [up]
y′(x)=xx2+1+y(x) ✓ Mathematica : cpu = 0.212384 (sec), leaf count = 88
DSolve[Derivative[1][y][x] == x/(Sqrt[1 + x^2] + y[x]),y[x],x]
Solve[12(log(−y(x)2x2+1−y(x)x2+1+1)+log(x2+1))=tanh−1(3x2+1+y(x)5(x2+1+y(x)))5+c1,y(x)] ✓ Maple : cpu = 0.438 (sec), leaf count = 115
dsolve(diff(y(x),x) = x/(y(x)+(x^2+1)^(1/2)),y(x))
−4ln(36x2+1y(x)+x2+1)3+2ln(−1296(x2+1y(x)−x2+y(x)2−1)11(y(x)+x2+1)2)3−45arctanh((3x2+1+y(x))55y(x)+5x2+1)15+2ln(x2+1)3−c1=0
[next] [prev] [prev-tail] [front] [up]