[next] [prev] [prev-tail] [tail] [up]
y′(x)=xF((y(x)−x)(y(x)+x))y(x) ✓ Mathematica : cpu = 0.255247 (sec), leaf count = 182
DSolve[Derivative[1][y][x] == (x*F[(-x + y[x])*(x + y[x])])/y[x],y[x],x]
Solve[∫1y(x)(K[2]F((K[2]−x)(x+K[2]))−1−∫1x(2F((K[2]−K[1])(K[1]+K[2]))K[1]K[2]F′((K[2]−K[1])(K[1]+K[2]))(F((K[2]−K[1])(K[1]+K[2]))−1)2−2K[1]K[2]F′((K[2]−K[1])(K[1]+K[2]))F((K[2]−K[1])(K[1]+K[2]))−1)dK[1])dK[2]+∫1x−F((y(x)−K[1])(K[1]+y(x)))K[1]F((y(x)−K[1])(K[1]+y(x)))−1dK[1]=c1,y(x)] ✓ Maple : cpu = 0.13 (sec), leaf count = 61
dsolve(diff(y(x),x) = F(-(x-y(x))*(y(x)+x))*x/y(x),y(x))
y(x)=x2+RootOf(−x2+∫_Z1F(_a)−1d_a+2c1)
[next] [prev] [prev-tail] [front] [up]