ODE No. 595

\[ y'(x)=\frac {F\left (\frac {x y(x)^2+1}{x}\right )}{x^2 y(x)} \] Mathematica : cpu = 0.338394 (sec), leaf count = 204

DSolve[Derivative[1][y][x] == F[(1 + x*y[x]^2)/x]/(x^2*y[x]),y[x],x]
 

\[\text {Solve}\left [\int _1^{y(x)}\left (\frac {K[2]}{2 F\left (\frac {x K[2]^2+1}{x}\right )-1}-\int _1^x\left (\frac {4 F\left (\frac {K[1] K[2]^2+1}{K[1]}\right ) K[2] F'\left (\frac {K[1] K[2]^2+1}{K[1]}\right )}{\left (2 F\left (\frac {K[1] K[2]^2+1}{K[1]}\right )-1\right )^2 K[1]^2}-\frac {2 K[2] F'\left (\frac {K[1] K[2]^2+1}{K[1]}\right )}{\left (2 F\left (\frac {K[1] K[2]^2+1}{K[1]}\right )-1\right ) K[1]^2}\right )dK[1]\right )dK[2]+\int _1^x-\frac {F\left (\frac {K[1] y(x)^2+1}{K[1]}\right )}{\left (2 F\left (\frac {K[1] y(x)^2+1}{K[1]}\right )-1\right ) K[1]^2}dK[1]=c_1,y(x)\right ]\] Maple : cpu = 0.181 (sec), leaf count = 72

dsolve(diff(y(x),x) = F((x*y(x)^2+1)/x)/y(x)/x^2,y(x))
 

\[y \left (x \right ) = \frac {\sqrt {x \left (\RootOf \left (\left (\int _{}^{\textit {\_Z}}\frac {1}{-1+2 F \left (\textit {\_a} \right )}d \textit {\_a} \right ) x +x c_{1}+1\right ) x -1\right )}}{x}\]