[next] [prev] [prev-tail] [tail] [up]
y′(x)=y(x)F(log(log(y(x)))−log(x)) ✓ Mathematica : cpu = 0.241464 (sec), leaf count = 205
DSolve[Derivative[1][y][x] == F[-Log[x] + Log[Log[y[x]]]]*y[x],y[x],x]
Solve[∫1y(x)(1K[2](xF(log(log(K[2]))−log(x))−log(K[2]))−∫1x(F(log(log(K[2]))−log(K[1]))(K[1]F′(log(log(K[2]))−log(K[1]))K[2]log(K[2])−1K[2])(F(log(log(K[2]))−log(K[1]))K[1]−log(K[2]))2−F′(log(log(K[2]))−log(K[1]))K[2](F(log(log(K[2]))−log(K[1]))K[1]−log(K[2]))log(K[2]))dK[1])dK[2]+∫1x−F(log(log(y(x)))−log(K[1]))F(log(log(y(x)))−log(K[1]))K[1]−log(y(x))dK[1]=c1,y(x)] ✓ Maple : cpu = 0.491 (sec), leaf count = 120
dsolve(diff(y(x),x) = F(ln(ln(y(x)))-ln(x))*y(x),y(x))
∫_bxF(ln(ln(y(x)))−ln(_a))_aF(ln(ln(y(x)))−ln(_a))−ln(y(x))d_a+∫y(x)(1_f(−xF(ln(ln(_f))−ln(x))+ln(_f))−(∫_bxF(ln(ln(_f))−ln(_a))−D(F)(ln(ln(_f))−ln(_a))(_aF(ln(ln(_f))−ln(_a))−ln(_f))2_fd_a))d_f+c1=0
[next] [prev] [prev-tail] [front] [up]