ODE No. 585

y(x)=y(x)F(log(log(y(x)))log(x)) Mathematica : cpu = 0.241464 (sec), leaf count = 205

DSolve[Derivative[1][y][x] == F[-Log[x] + Log[Log[y[x]]]]*y[x],y[x],x]
 

Solve[1y(x)(1K[2](xF(log(log(K[2]))log(x))log(K[2]))1x(F(log(log(K[2]))log(K[1]))(K[1]F(log(log(K[2]))log(K[1]))K[2]log(K[2])1K[2])(F(log(log(K[2]))log(K[1]))K[1]log(K[2]))2F(log(log(K[2]))log(K[1]))K[2](F(log(log(K[2]))log(K[1]))K[1]log(K[2]))log(K[2]))dK[1])dK[2]+1xF(log(log(y(x)))log(K[1]))F(log(log(y(x)))log(K[1]))K[1]log(y(x))dK[1]=c1,y(x)] Maple : cpu = 0.491 (sec), leaf count = 120

dsolve(diff(y(x),x) = F(ln(ln(y(x)))-ln(x))*y(x),y(x))
 

_bxF(ln(ln(y(x)))ln(_a))_aF(ln(ln(y(x)))ln(_a))ln(y(x))d_a+y(x)(1_f(xF(ln(ln(_f))ln(x))+ln(_f))(_bxF(ln(ln(_f))ln(_a))D(F)(ln(ln(_f))ln(_a))(_aF(ln(ln(_f))ln(_a))ln(_f))2_fd_a))d_f+c1=0