ODE No. 577

y(x)=F(y(x)a+x) Mathematica : cpu = 0.271736 (sec), leaf count = 243

DSolve[Derivative[1][y][x] == F[y[x]/(a + x)],y[x],x]
 

Solve[1y(x)(1aF(K[2]a+x)xF(K[2]a+x)+K[2]1x(F(K[2]a+K[1])(a+K[1])(aF(K[2]a+K[1])+K[1]F(K[2]a+K[1])K[2])F(K[2]a+K[1])(aF(K[2]a+K[1])a+K[1]+K[1]F(K[2]a+K[1])a+K[1]1)(aF(K[2]a+K[1])+K[1]F(K[2]a+K[1])K[2])2)dK[1])dK[2]+1xF(y(x)a+K[1])aF(y(x)a+K[1])+K[1]F(y(x)a+K[1])y(x)dK[1]=c1,y(x)] Maple : cpu = 0.038 (sec), leaf count = 28

dsolve(diff(y(x),x) = F(y(x)/(x+a)),y(x))
 

y(x)=RootOf(_Z1F(_a)+_ad_a+ln(x+a)+c1)(x+a)