[next] [prev] [prev-tail] [tail] [up]
y′(x)=F(y(x)a+x) ✓ Mathematica : cpu = 0.271736 (sec), leaf count = 243
DSolve[Derivative[1][y][x] == F[y[x]/(a + x)],y[x],x]
Solve[∫1y(x)(1−aF(K[2]a+x)−xF(K[2]a+x)+K[2]−∫1x(F′(K[2]a+K[1])(a+K[1])(aF(K[2]a+K[1])+K[1]F(K[2]a+K[1])−K[2])−F(K[2]a+K[1])(aF′(K[2]a+K[1])a+K[1]+K[1]F′(K[2]a+K[1])a+K[1]−1)(aF(K[2]a+K[1])+K[1]F(K[2]a+K[1])−K[2])2)dK[1])dK[2]+∫1xF(y(x)a+K[1])aF(y(x)a+K[1])+K[1]F(y(x)a+K[1])−y(x)dK[1]=c1,y(x)] ✓ Maple : cpu = 0.038 (sec), leaf count = 28
dsolve(diff(y(x),x) = F(y(x)/(x+a)),y(x))
y(x)=−RootOf(∫_Z1F(−_a)+_ad_a+ln(x+a)+c1)(x+a)
[next] [prev] [prev-tail] [front] [up]