ODE No. 537

\[ \left (x^6+3 x y(x)^2\right ) y'(x)-2 x^5 y(x)+x^3 y'(x)^3-3 x^2 y(x) y'(x)^2-y(x)^3=0 \] Mathematica : cpu = 0.03308 (sec), leaf count = 16

DSolve[-2*x^5*y[x] - y[x]^3 + (x^6 + 3*x*y[x]^2)*Derivative[1][y][x] - 3*x^2*y[x]*Derivative[1][y][x]^2 + x^3*Derivative[1][y][x]^3 == 0,y[x],x]
 

\[\left \{\left \{y(x)\to x \left (c_1 x+c_1{}^3\right )\right \}\right \}\] Maple : cpu = 4.368 (sec), leaf count = 209

dsolve(x^3*diff(y(x),x)^3-3*x^2*y(x)*diff(y(x),x)^2+(3*x*y(x)^2+x^6)*diff(y(x),x)-y(x)^3-2*x^5*y(x)=0,y(x))
 

\[y \left (x \right ) = -\frac {2 \sqrt {-3 x}\, x^{2}}{9}\]