ODE No. 52

\[ -a y(x)^n-b x^{\frac {n}{1-n}}+y'(x)=0 \] Mathematica : cpu = 0.275953 (sec), leaf count = 117

DSolve[-(b*x^(n/(1 - n))) - a*y[x]^n + Derivative[1][y][x] == 0,y[x],x]
 

\[\text {Solve}\left [\int _1^{\left (\frac {a x^{-\frac {n}{1-n}}}{b}\right )^{\frac {1}{n}} y(x)}\frac {1}{K[1]^n-\left (\frac {(-1)^n b^{1-n} (n-1)^{-n}}{a}\right )^{\frac {1}{n}} K[1]+1}dK[1]=\int _1^xb K[2]^{\frac {n}{1-n}} \left (\frac {a K[2]^{-\frac {n}{1-n}}}{b}\right )^{\frac {1}{n}}dK[2]+c_1,y(x)\right ]\] Maple : cpu = 0.432 (sec), leaf count = 61

dsolve(diff(y(x),x)-a*y(x)^n-b*x^(n/(1-n)) = 0,y(x))
 

\[-\left (\int _{\textit {\_b}}^{y \left (x \right )}\frac {x^{\frac {n}{n -1}}}{\left (a x \left (n -1\right ) \textit {\_a}^{n}+\textit {\_a} \right ) x^{\frac {n}{n -1}}+b x \left (n -1\right )}d \textit {\_a} \right ) \left (n -1\right )+\ln \left (x \right )-c_{1} = 0\]