\[ -x^2+x y'(x)^2+y(x) y'(x)=0 \] ✓ Mathematica : cpu = 0.111246 (sec), leaf count = 673
DSolve[-x^2 + y[x]*Derivative[1][y][x] + x*Derivative[1][y][x]^2 == 0,y[x],x]
\[\left \{\text {Solve}\left [\int \left (\frac {4 \sqrt {4 x^3+y(x)^2} x^2}{5 y(x) \left (4 x^3-15 y(x)^2\right )}+\frac {16 x^2}{5 \left (4 x^3-15 y(x)^2\right )}-\frac {\sqrt {4 x^3+y(x)^2}}{5 y(x) x}+\frac {1}{5 x}\right )dx+\int \left (\frac {8 y(x)}{15 y(x)^2-4 x^3}-\int \left (-\frac {4 \sqrt {4 x^3+y(x)^2} x^2}{5 y(x)^2 \left (4 x^3-15 y(x)^2\right )}+\frac {24 \sqrt {4 x^3+y(x)^2} x^2}{\left (4 x^3-15 y(x)^2\right )^2}+\frac {4 x^2}{5 \left (4 x^3-15 y(x)^2\right ) \sqrt {4 x^3+y(x)^2}}+\frac {96 y(x) x^2}{\left (4 x^3-15 y(x)^2\right )^2}+\frac {\sqrt {4 x^3+y(x)^2}}{5 y(x)^2 x}-\frac {1}{5 \sqrt {4 x^3+y(x)^2} x}\right )dx+\frac {2 \sqrt {4 x^3+y(x)^2}}{15 y(x)^2-4 x^3}\right )dy(x)=c_1,y(x)\right ],\text {Solve}\left [\int \left (-\frac {4 \sqrt {4 x^3+y(x)^2} x^2}{5 y(x) \left (4 x^3-15 y(x)^2\right )}+\frac {16 x^2}{5 \left (4 x^3-15 y(x)^2\right )}+\frac {\sqrt {4 x^3+y(x)^2}}{5 y(x) x}+\frac {1}{5 x}\right )dx+\int \left (\frac {8 y(x)}{15 y(x)^2-4 x^3}-\int \left (\frac {4 \sqrt {4 x^3+y(x)^2} x^2}{5 y(x)^2 \left (4 x^3-15 y(x)^2\right )}-\frac {24 \sqrt {4 x^3+y(x)^2} x^2}{\left (4 x^3-15 y(x)^2\right )^2}-\frac {4 x^2}{5 \left (4 x^3-15 y(x)^2\right ) \sqrt {4 x^3+y(x)^2}}+\frac {96 y(x) x^2}{\left (4 x^3-15 y(x)^2\right )^2}-\frac {\sqrt {4 x^3+y(x)^2}}{5 y(x)^2 x}+\frac {1}{5 \sqrt {4 x^3+y(x)^2} x}\right )dx-\frac {2 \sqrt {4 x^3+y(x)^2}}{15 y(x)^2-4 x^3}\right )dy(x)=c_1,y(x)\right ]\right \}\] ✓ Maple : cpu = 0.173 (sec), leaf count = 269
dsolve(x*diff(y(x),x)^2+y(x)*diff(y(x),x)-x^2 = 0,y(x))
\[\int _{\textit {\_b}}^{x}\frac {-y \left (x \right )+\sqrt {4 \textit {\_a}^{3}+y \left (x \right )^{2}}}{\textit {\_a} \left (4 y \left (x \right )-\sqrt {4 \textit {\_a}^{3}+y \left (x \right )^{2}}\right )}d \textit {\_a} +\int _{}^{y \left (x \right )}\frac {-2+\left (48 \textit {\_f} -12 \sqrt {4 x^{3}+\textit {\_f}^{2}}\right ) \left (\int _{\textit {\_b}}^{x}\frac {\textit {\_a}^{2}}{\left (-4 \textit {\_f} +\sqrt {4 \textit {\_a}^{3}+\textit {\_f}^{2}}\right )^{2} \sqrt {4 \textit {\_a}^{3}+\textit {\_f}^{2}}}d \textit {\_a} \right )}{4 \textit {\_f} -\sqrt {4 x^{3}+\textit {\_f}^{2}}}d \textit {\_f} +c_{1} = 0\]