\[ y'(x)^2+e^x \left (y'(x)-y(x)\right )=0 \] ✓ Mathematica : cpu = 1.99202 (sec), leaf count = 190
DSolve[Derivative[1][y][x]^2 + E^x*(-y[x] + Derivative[1][y][x]) == 0,y[x],x]
\[\left \{\text {Solve}\left [\log (y(x))-\frac {-e^{x/2} \sqrt {4 y(x)+e^x}-\frac {4 \sqrt {\frac {e^x}{y(x)}+4} y(x)^{3/2} \sinh ^{-1}\left (\frac {e^{x/2}}{2 \sqrt {y(x)}}\right )}{\sqrt {4 y(x)+e^x}}+e^x}{2 y(x)}=c_1,y(x)\right ],\text {Solve}\left [\log (y(x))-\frac {e^{x/2} \sqrt {4 y(x)+e^x}+\frac {4 \sqrt {\frac {e^x}{y(x)}+4} y(x)^{3/2} \sinh ^{-1}\left (\frac {e^{x/2}}{2 \sqrt {y(x)}}\right )}{\sqrt {4 y(x)+e^x}}+e^x}{2 y(x)}=c_1,y(x)\right ]\right \}\] ✓ Maple : cpu = 0.743 (sec), leaf count = 115
dsolve(diff(y(x),x)^2+(diff(y(x),x)-y(x))*exp(x) = 0,y(x))
\[\ln \left (y \left (x \right )\right )+\frac {\sqrt {{\mathrm e}^{2 x}+4 y \left (x \right ) {\mathrm e}^{x}}}{2 y \left (x \right )}+2 \arctanh \left (\sqrt {{\mathrm e}^{2 x}+4 y \left (x \right ) {\mathrm e}^{x}}\, {\mathrm e}^{-x}\right )-\frac {{\mathrm e}^{x}}{2 y \left (x \right )}-c_{1} = 0\]