ODE No. 363

\[ \left (x y'(x)-y(x)\right ) \cos ^2\left (\frac {y(x)}{x}\right )+x=0 \] Mathematica : cpu = 0.363155 (sec), leaf count = 33

DSolve[x + Cos[y[x]/x]^2*(-y[x] + x*Derivative[1][y][x]) == 0,y[x],x]
 

\[\text {Solve}\left [\frac {y(x)}{2 x}+\frac {1}{4} \sin \left (\frac {2 y(x)}{x}\right )=-\log (x)+c_1,y(x)\right ]\] Maple : cpu = 0.08 (sec), leaf count = 35

dsolve((x*diff(y(x),x)-y(x))*cos(y(x)/x)^2+x = 0,y(x))
 

\[-\frac {\cos \left (\frac {y \left (x \right )}{x}\right ) \sin \left (\frac {y \left (x \right )}{x}\right ) x +y \left (x \right )}{2 x}-\ln \left (x \right )-c_{1} = 0\]