ODE No. 349

\[ x y'(x) \cot \left (\frac {y(x)}{x}\right )+2 x \sin \left (\frac {y(x)}{x}\right )-y(x) \cot \left (\frac {y(x)}{x}\right )=0 \] Mathematica : cpu = 0.231829 (sec), leaf count = 15

DSolve[2*x*Sin[y[x]/x] - Cot[y[x]/x]*y[x] + x*Cot[y[x]/x]*Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to x \csc ^{-1}(2 (\log (x)+c_1))\right \}\right \}\] Maple : cpu = 0.046 (sec), leaf count = 17

dsolve(x*diff(y(x),x)*cot(y(x)/x)+2*x*sin(y(x)/x)-y(x)*cot(y(x)/x) = 0,y(x))
 

\[y \left (x \right ) = \arcsin \left (\frac {1}{2 \ln \left (x \right )+2 c_{1}}\right ) x\]