\[ \left (\sqrt {x^2+y(x)^2}+x\right ) y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.225766 (sec), leaf count = 161
DSolve[-y[x] + (x + Sqrt[x^2 + y[x]^2])*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -\sqrt {-2 i x \cosh (c_1)-2 i x \sinh (c_1)-\cosh (2 c_1)-\sinh (2 c_1)}\right \},\left \{y(x)\to \sqrt {-2 i x \cosh (c_1)-2 i x \sinh (c_1)-\cosh (2 c_1)-\sinh (2 c_1)}\right \},\left \{y(x)\to -\sqrt {2 i x \cosh (c_1)+2 i x \sinh (c_1)-\cosh (2 c_1)-\sinh (2 c_1)}\right \},\left \{y(x)\to \sqrt {2 i x \cosh (c_1)+2 i x \sinh (c_1)-\cosh (2 c_1)-\sinh (2 c_1)}\right \}\right \}\] ✓ Maple : cpu = 0.079 (sec), leaf count = 28
dsolve(((y(x)^2+x^2)^(1/2)+x)*diff(y(x),x)-y(x) = 0,y(x))
\[-c_{1}+\frac {\sqrt {y \left (x \right )^{2}+x^{2}}}{y \left (x \right )^{2}}+\frac {x}{y \left (x \right )^{2}} = 0\]