\[ \left (7 x y(x)^3+y(x)-5 x\right ) y'(x)+y(x)^4-5 y(x)=0 \] ✓ Mathematica : cpu = 0.162886 (sec), leaf count = 302
DSolve[-5*y[x] + y[x]^4 + (-5*x + y[x] + 7*x*y[x]^3)*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\& ,1\right ]\right \},\left \{y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\& ,2\right ]\right \},\left \{y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\& ,3\right ]\right \},\left \{y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\& ,4\right ]\right \},\left \{y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\& ,5\right ]\right \},\left \{y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\& ,6\right ]\right \},\left \{y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\& ,7\right ]\right \}\right \}\] ✓ Maple : cpu = 0.033 (sec), leaf count = 35
dsolve((7*x*y(x)^3+y(x)-5*x)*diff(y(x),x)+y(x)^4-5*y(x) = 0,y(x))
\[x +\frac {2 y \left (x \right )^{5}-25 y \left (x \right )^{2}-10 c_{1}}{10 y \left (x \right ) \left (y \left (x \right )^{3}-5\right )^{2}} = 0\]