\[ y'(x) \left (b (\alpha x+\beta y(x))^2-\beta (a x+b y(x))\right )-\alpha (a x+b y(x))+a (\alpha x+\beta y(x))^2=0 \] ✓ Mathematica : cpu = 1.1306 (sec), leaf count = 39
DSolve[-(alpha*(a*x + b*y[x])) + a*(alpha*x + beta*y[x])^2 + (-(beta*(a*x + b*y[x])) + b*(alpha*x + beta*y[x])^2)*Derivative[1][y][x] == 0,y[x],x]
\[\text {Solve}\left [\frac {a \beta \left (\log (a x+b y(x))+\frac {1}{\alpha x+\beta y(x)}\right )}{a \beta -\alpha b}=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.16 (sec), leaf count = 50
dsolve((b*(beta*y(x)+alpha*x)^2-beta*(a*x+b*y(x)))*diff(y(x),x)+a*(beta*y(x)+alpha*x)^2-alpha*(a*x+b*y(x)) = 0,y(x))
\[y \left (x \right ) = \frac {-a x +{\mathrm e}^{\RootOf \left (c_{1} a \beta x -c_{1} \alpha b x -\textit {\_Z} a \beta x +\textit {\_Z} \alpha b x -c_{1} \beta \,{\mathrm e}^{\textit {\_Z}}+{\mathrm e}^{\textit {\_Z}} \textit {\_Z} \beta +b \right )}}{b}\]