[next] [prev] [prev-tail] [tail] [up]
ay(x)+c(−ebx)+y′(x)=0 ✓ Mathematica : cpu = 0.0632209 (sec), leaf count = 34
DSolve[-(c*E^(b*x)) + a*y[x] + Derivative[1][y][x] == 0,y[x],x]
{{y(x)→cex(a+b)−axa+b+c1e−ax}} ✓ Maple : cpu = 0.021 (sec), leaf count = 25
dsolve(diff(y(x),x)+a*y(x)-c*exp(b*x) = 0,y(x))
y(x)=(ce(a+b)xa+b+c1)e−ax
Hand solution
(1)dydx+ay(x)=cebx
Integrating factor μ=e∫adx=eax. Hence (1) becomes
ddx(μy(x))=μcebxμy(x)=∫μcebxdx+C
Replacing μ by eax
y(x)=ce−ax∫e(a+b)xdx+Ce−ax=ce−axe(a+b)xa+b+Ce−ax=ce(a+b)x−axa+b+Ce−ax
Can be reduced to
y(x)=cebxa+b+Ce−ax
[next] [prev] [prev-tail] [front] [up]