ODE No. 2

ay(x)+c(ebx)+y(x)=0 Mathematica : cpu = 0.0632209 (sec), leaf count = 34

DSolve[-(c*E^(b*x)) + a*y[x] + Derivative[1][y][x] == 0,y[x],x]
 

{{y(x)cex(a+b)axa+b+c1eax}} Maple : cpu = 0.021 (sec), leaf count = 25

dsolve(diff(y(x),x)+a*y(x)-c*exp(b*x) = 0,y(x))
 

y(x)=(ce(a+b)xa+b+c1)eax

Hand solution

(1)dydx+ay(x)=cebx

Integrating factor μ=eadx=eax. Hence (1) becomes

ddx(μy(x))=μcebxμy(x)=μcebxdx+C

Replacing μ by eax

y(x)=ceaxe(a+b)xdx+Ceax=ceaxe(a+b)xa+b+Ceax=ce(a+b)xaxa+b+Ceax

Can be reduced to

y(x)=cebxa+b+Ceax