ODE No. 1878

\[ \left \{t x'(t)+2 x(t)=t,-((t+2) x(t))+t y'(t)-t y(t)=-t\right \} \] Mathematica : cpu = 0.0094017 (sec), leaf count = 39

DSolve[{2*x[t] + t*Derivative[1][x][t] == t, -((2 + t)*x[t]) - t*y[t] + t*Derivative[1][y][t] == -t},{x[t], y[t]},t]
 

\[\left \{\left \{x(t)\to \frac {t}{3}+\frac {c_1}{t^2},y(t)\to -\frac {c_1}{t^2}-\frac {t}{3}+c_2 e^t\right \}\right \}\] Maple : cpu = 0.069 (sec), leaf count = 39

dsolve({t*diff(x(t),t)+2*x(t) = t, t*diff(y(t),t)-(t+2)*x(t)-t*y(t) = -t})
 

\[\left \{x \left (t \right ) = \frac {t}{3}+\frac {c_{2}}{t^{2}}, y \left (t \right ) = \frac {3 c_{1} {\mathrm e}^{t} t^{2}-t^{3}-3 c_{2}}{3 t^{2}}\right \}\]