ODE No. 1834

\[ \left (x^2 y(x) y''(x)+x^2 \left (-y'(x)^2\right )+y(x)^2\right )^2-4 x y(x) \left (x y'(x)-y(x)\right )^3=0 \] Mathematica : cpu = 18.574 (sec), leaf count = 19

DSolve[-4*x*y[x]*(-y[x] + x*Derivative[1][y][x])^3 + (y[x]^2 - x^2*Derivative[1][y][x]^2 + x^2*y[x]*Derivative[2][y][x])^2 == 0,y[x],x]
 

\[\left \{\left \{y(x)\to c_1 x e^{\frac {1}{-x+c_2}}\right \}\right \}\] Maple : cpu = 0. (sec), leaf count = 0

dsolve((y(x)^2-x^2*diff(y(x),x)^2+x^2*y(x)*diff(diff(y(x),x),x))^2-4*x*y(x)*(x*diff(y(x),x)-y(x))^3=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = c_{1} x\]