ODE No. 1815

\[ h(y(x))^2 \left (-j\left (x,\frac {y'(x)}{h(y(x))}\right )\right )+h(y(x)) y''(x)-h(y(x)) y'(x)^2=0 \] Mathematica : cpu = 1.23206 (sec), leaf count = 0

DSolve[-(h[y[x]]^2*j[x, Derivative[1][y][x]/h[y[x]]]) - h[y[x]]*Derivative[1][y][x]^2 + h[y[x]]*Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-(h[y[x]]^2*j[x, Derivative[1][y][x]/h[y[x]]]) - h[y[x]]*Derivative[1][y][x]^2 + h[y[x]]*Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0.125 (sec), leaf count = 25

dsolve(h(y(x))*diff(diff(y(x),x),x)-D(h)(y(x))*diff(y(x),x)^2-h(y(x))^2=0,y(x))
 

\[-c_{1} x +\frac {x^{2}}{2}+\int _{}^{y \left (x \right )}-\frac {1}{h \left (\textit {\_a} \right )}d \textit {\_a} +c_{2} = 0\]