ODE No. 1774

\[ a x^2 y(x) y''(x)+b x^2 y'(x)^2+c x y(x) y'(x)+d y(x)^2=0 \] Mathematica : cpu = 1.18864 (sec), leaf count = 92

DSolve[d*y[x]^2 + c*x*y[x]*Derivative[1][y][x] + b*x^2*Derivative[1][y][x]^2 + a*x^2*y[x]*Derivative[2][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to c_2 \exp \left (-\frac {\log (x) \left (a \left (\sqrt {\frac {a^2-2 a (c+2 d)-4 b d+c^2}{a^2}}-1\right )+c\right )-2 a \log \left (x^{\sqrt {\frac {a^2-2 a (c+2 d)-4 b d+c^2}{a^2}}}+c_1\right )}{2 (a+b)}\right )\right \}\right \}\] Maple : cpu = 1.184 (sec), leaf count = 136

dsolve(a*x^2*y(x)*diff(diff(y(x),x),x)+b*x^2*diff(y(x),x)^2+c*x*y(x)*diff(y(x),x)+d*y(x)^2=0,y(x))
 

\[y \left (x \right ) = x^{-\frac {\sqrt {\left (-4 a -4 b \right ) d +\left (a -c \right )^{2}}}{2 b +2 a}} x^{\frac {a}{2 b +2 a}} x^{-\frac {c}{2 b +2 a}} \left (\frac {a^{2}+\left (-2 c -4 d \right ) a -4 b d +c^{2}}{\left (a +b \right )^{2} \left (x^{\frac {\sqrt {\left (-4 a -4 b \right ) d +\left (a -c \right )^{2}}}{a}} c_{1}-c_{2}\right )^{2}}\right )^{-\frac {a}{2 b +2 a}}\]