ODE No. 1483

\[ -4 (\nu +x-1) y''(x)+(6 \nu +2 x-5) y'(x)+(1-2 \nu ) y(x)+2 x y^{(3)}(x)=0 \] Mathematica : cpu = 0.112306 (sec), leaf count = 112

DSolve[(1 - 2*nu)*y[x] + (-5 + 6*nu + 2*x)*Derivative[1][y][x] - 4*(-1 + nu + x)*Derivative[2][y][x] + 2*x*Derivative[3][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to \frac {c_3 e^x x \Gamma \left (\frac {5}{2}-3 \nu \right ) \left (\frac {2 \, _1\tilde {F}_1\left (\frac {3}{2}-3 \nu ;1-2 \nu ;-x\right )}{3 (2 \nu -1) x}+\frac {2}{3 x \Gamma (2-2 \nu )}\right )}{\Gamma \left (\frac {3}{2}-\nu \right )}+c_2 e^x G_{2,3}^{2,1}\left (x\left |\begin {array}{c} 1,3 \nu -\frac {1}{2} \\ 1,2 \nu ,0 \\\end {array}\right .\right )+c_1 e^x\right \}\right \}\] Maple : cpu = 0.205 (sec), leaf count = 37

dsolve(2*x*diff(diff(diff(y(x),x),x),x)-4*(x+nu-1)*diff(diff(y(x),x),x)+(2*x+6*nu-5)*diff(y(x),x)+(1-2*nu)*y(x)=0,y(x))
 

\[y \left (x \right ) = {\mathrm e}^{x} c_{1}+c_{2} {\mathrm e}^{\frac {x}{2}} x^{\nu } \BesselI \left (\nu , \frac {x}{2}\right )+c_{3} {\mathrm e}^{\frac {x}{2}} x^{\nu } \BesselK \left (\nu , \frac {x}{2}\right )\]