\[ x (a+b-1) y'(x)-a b y(x)+x^2 \left (-y''(x)\right )+y^{(3)}(x)=0 \] ✓ Mathematica : cpu = 0.0194908 (sec), leaf count = 127
DSolve[-(a*b*y[x]) + (-1 + a + b)*x*Derivative[1][y][x] - x^2*Derivative[2][y][x] + Derivative[3][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \sqrt [3]{-\frac {1}{3}} c_2 x \, _2F_2\left (\frac {1}{3}-\frac {a}{3},\frac {1}{3}-\frac {b}{3};\frac {2}{3},\frac {4}{3};\frac {x^3}{3}\right )+c_1 \, _2F_2\left (-\frac {a}{3},-\frac {b}{3};\frac {1}{3},\frac {2}{3};\frac {x^3}{3}\right )+\left (-\frac {1}{3}\right )^{2/3} c_3 x^2 \, _2F_2\left (\frac {2}{3}-\frac {a}{3},\frac {2}{3}-\frac {b}{3};\frac {4}{3},\frac {5}{3};\frac {x^3}{3}\right )\right \}\right \}\] ✓ Maple : cpu = 0.113 (sec), leaf count = 71
dsolve(diff(diff(diff(y(x),x),x),x)-x^2*diff(diff(y(x),x),x)+(a+b-1)*x*diff(y(x),x)-b*y(x)*a=0,y(x))
\[y \left (x \right ) = c_{1} \hypergeom \left (\left [-\frac {a}{3}, -\frac {b}{3}\right ], \left [\frac {1}{3}, \frac {2}{3}\right ], \frac {x^{3}}{3}\right )+c_{2} x^{2} \hypergeom \left (\left [-\frac {a}{3}+\frac {2}{3}, -\frac {b}{3}+\frac {2}{3}\right ], \left [\frac {4}{3}, \frac {5}{3}\right ], \frac {x^{3}}{3}\right )+c_{3} \hypergeom \left (\left [\frac {1}{3}-\frac {a}{3}, \frac {1}{3}-\frac {b}{3}\right ], \left [\frac {2}{3}, \frac {4}{3}\right ], \frac {x^{3}}{3}\right ) x\]