[next] [prev] [prev-tail] [tail] [up]
x2(ay(x)2+y′(x))+bxα+c=0 ✓ Mathematica : cpu = 0.250037 (sec), leaf count = 1787
DSolve[c + b*x^alpha + x^2*(a*y[x]^2 + Derivative[1][y][x]) == 0,y[x],x]
{{y(x)→ai4ac−1α+α2α2−α2−4aα2c2α2α−i4ac−1α+αα2+α2−4aα2cα2+1bi4ac−1α+α2α2−α2−4aα2c2α2(i4ac−1α+α2α2−α2−4aα2c2α2)(xα)i4ac−1α+α2α2−α2−4aα2c2α2−1Jα2−4aα2cα2(2abxαα)Γ(1−4acα+1)xα−1+12ai4ac−1α+α2α2−α2−4aα2c2α2+12αα2−4aα2cα2−i4ac−1α+αα2bi4ac−1α+α2α2−α2−4aα2c2α2+12(xα)i4ac−1α+α2α2−α2−4aα2c2α2−12(Jα2−4aα2cα2−1(2abxαα)−Jα2−4aα2cα2+1(2abxαα))Γ(1−4acα+1)xα−1+c1(aα−iα4ac−12α2+α2−4aα2c2α2α−α−iα4ac−1α2−α2−4aα2cα2+1bα−iα4ac−12α2+α2−4aα2c2α2(α−iα4ac−12α2+α2−4aα2c2α2)(xα)α−iα4ac−12α2+α2−4aα2c2α2−1J−α2−4aα2cα2(2abxαα)Γ(1−1−4acα)xα−1+12aα−iα4ac−12α2+α2−4aα2c2α2+12α−α−iα4ac−1α2−α2−4aα2cα2bα−iα4ac−12α2+α2−4aα2c2α2+12(xα)α−iα4ac−12α2+α2−4aα2c2α2−12(J−α2−4aα2cα2−1(2abxαα)−J1−α2−4aα2cα2(2abxαα))Γ(1−1−4acα)xα−1)a(aα−iα4ac−12α2+α2−4aα2c2α2bα−iα4ac−12α2+α2−4aα2c2α2(xα)α−iα4ac−12α2+α2−4aα2c2α2J−α2−4aα2cα2(2abxαα)c1Γ(1−1−4acα)α−α−iα4ac−1α2−α2−4aα2cα2+ai4ac−1α+α2α2−α2−4aα2c2α2bi4ac−1α+α2α2−α2−4aα2c2α2(xα)i4ac−1α+α2α2−α2−4aα2c2α2Jα2−4aα2cα2(2abxαα)Γ(1−4acα+1)αα2−4aα2cα2−i4ac−1α+αα2)}} ✓ Maple : cpu = 0.11 (sec), leaf count = 219
dsolve(x^2*(diff(y(x),x)+a*y(x)^2)+b*x^alpha+c = 0,y(x))
y(x)=−2(BesselY(−4ac+1+αα,2abxα2α)c1+BesselJ(−4ac+1+αα,2abxα2α))abxα2+(−4ac+1+1)(BesselY(−4ac+1α,2abxα2α)c1+BesselJ(−4ac+1α,2abxα2α))2xa(BesselY(−4ac+1α,2abxα2α)c1+BesselJ(−4ac+1α,2abxα2α))
[next] [prev] [prev-tail] [front] [up]