ODE No. 1346

\[ y''(x)=\frac {(a+b) y'(x)}{x^2}-\frac {y(x) (x (a+b)+a b)}{x^4} \] Mathematica : cpu = 0.082218 (sec), leaf count = 37

DSolve[Derivative[2][y][x] == -(((a*b + (a + b)*x)*y[x])/x^4) + ((a + b)*Derivative[1][y][x])/x^2,y[x],x]
 

\[\left \{\left \{y(x)\to \frac {c_2 x e^{-\frac {a}{x}}}{a-b}+c_1 x e^{-\frac {b}{x}}\right \}\right \}\] Maple : cpu = 0.05 (sec), leaf count = 25

dsolve(diff(diff(y(x),x),x) = 1/x^2*(a+b)*diff(y(x),x)-((a+b)*x+a*b)/x^4*y(x),y(x))
 

\[y \left (x \right ) = x \left ({\mathrm e}^{-\frac {b}{x}} c_{2}+{\mathrm e}^{-\frac {a}{x}} c_{1}\right )\]