ODE No. 1318

\[ \left (a x^2+b\right ) y'(x)+c x y(x)+x \left (x^2-1\right ) y''(x)=0 \] Mathematica : cpu = 0.194653 (sec), leaf count = 172

DSolve[c*x*y[x] + (b + a*x^2)*Derivative[1][y][x] + x*(-1 + x^2)*Derivative[2][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to c_1 \, _2F_1\left (\frac {a}{4}-\frac {1}{4} \sqrt {a^2-2 a-4 c+1}-\frac {1}{4},\frac {a}{4}+\frac {1}{4} \sqrt {a^2-2 a-4 c+1}-\frac {1}{4};\frac {1}{2}-\frac {b}{2};x^2\right )+i^{b+1} c_2 x^{b+1} \, _2F_1\left (\frac {a}{4}+\frac {b}{2}-\frac {1}{4} \sqrt {a^2-2 a-4 c+1}+\frac {1}{4},\frac {a}{4}+\frac {b}{2}+\frac {1}{4} \sqrt {a^2-2 a-4 c+1}+\frac {1}{4};\frac {b}{2}+\frac {3}{2};x^2\right )\right \}\right \}\] Maple : cpu = 0.101 (sec), leaf count = 122

dsolve(x*(x^2-1)*diff(diff(y(x),x),x)+(a*x^2+b)*diff(y(x),x)+c*x*y(x)=0,y(x))
 

\[y \left (x \right ) = c_{1} \hypergeom \left (\left [-\frac {1}{4}+\frac {a}{4}+\frac {\sqrt {a^{2}-2 a -4 c +1}}{4}, -\frac {1}{4}+\frac {a}{4}-\frac {\sqrt {a^{2}-2 a -4 c +1}}{4}\right ], \left [-\frac {b}{2}+\frac {1}{2}\right ], x^{2}\right )+c_{2} x^{b +1} \hypergeom \left (\left [\frac {1}{4}+\frac {a}{4}+\frac {b}{2}+\frac {\sqrt {a^{2}-2 a -4 c +1}}{4}, \frac {1}{4}+\frac {a}{4}+\frac {b}{2}-\frac {\sqrt {a^{2}-2 a -4 c +1}}{4}\right ], \left [\frac {3}{2}+\frac {b}{2}\right ], x^{2}\right )\]