ODE No. 1214

y(x)(a2+x2(2a+2n+1)+a(1)nx4)+x2y(x)=0 Mathematica : cpu = 0.200588 (sec), leaf count = 260

DSolve[((-1)^n*a - a^2 + (1 + 2*a + 2*n)*x^2 - x^4)*y[x] + x^2*Derivative[2][y][x] == 0,y[x],x]
 

{{y(x)c1ex22214(4a24a(1)n+1+2)(x2)14(4a24a(1)n+1+2)U(14(2a2n+4a24(1)na+1+1),12(4a24(1)na+1+2),x2)x+c2ex22214(4a24a(1)n+1+2)(x2)14(4a24a(1)n+1+2)L14(2a+2n4a24(1)na+11)12(4a24(1)na+1+2)1(x2)x}} Maple : cpu = 0.156 (sec), leaf count = 71

dsolve(x^2*diff(diff(y(x),x),x)+(-x^4+(2*n+2*a+1)*x^2+(-1)^n*a-a^2)*y(x)=0,y(x))
 

y(x)=WhittakerW(n2+a2+14,14(1)na+4a24,x2)c2+WhittakerM(n2+a2+14,14(1)na+4a24,x2)c1x