[next] [prev] [prev-tail] [tail] [up]
y(x)(−a2+x2(2a+2n+1)+a(−1)n−x4)+x2y″(x)=0 ✓ Mathematica : cpu = 0.200588 (sec), leaf count = 260
DSolve[((-1)^n*a - a^2 + (1 + 2*a + 2*n)*x^2 - x^4)*y[x] + x^2*Derivative[2][y][x] == 0,y[x],x]
{{y(x)→c1e−x22214(4a2−4a(−1)n+1+2)(x2)14(4a2−4a(−1)n+1+2)U(14(−2a−2n+4a2−4(−1)na+1+1),12(4a2−4(−1)na+1+2),x2)x+c2e−x22214(4a2−4a(−1)n+1+2)(x2)14(4a2−4a(−1)n+1+2)L14(2a+2n−4a2−4(−1)na+1−1)12(4a2−4(−1)na+1+2)−1(x2)x}} ✓ Maple : cpu = 0.156 (sec), leaf count = 71
dsolve(x^2*diff(diff(y(x),x),x)+(-x^4+(2*n+2*a+1)*x^2+(-1)^n*a-a^2)*y(x)=0,y(x))
y(x)=WhittakerW(n2+a2+14,1−4(−1)na+4a24,x2)c2+WhittakerM(n2+a2+14,1−4(−1)na+4a24,x2)c1x
[next] [prev] [prev-tail] [front] [up]