ODE No. 113

ax2+y(x)2+xy(x)y(x)=0 Mathematica : cpu = 0.117947 (sec), leaf count = 16

DSolve[-y[x] + a*Sqrt[x^2 + y[x]^2] + x*Derivative[1][y][x] == 0,y[x],x]
 

{{y(x)xsinh(alog(x)+c1)}} Maple : cpu = 0.039 (sec), leaf count = 33

dsolve(x*diff(y(x),x)+a*(y(x)^2+x^2)^(1/2)-y(x) = 0,y(x))
 

xay(x)2+x2x+xay(x)xc1=0

Hand solution

xy=ax2+y2+y

Let y=xv, then y=v+xv and the above becomes

x(v+xv)=ax2+(xv)2+xvx(v+xv)=ax1+v2+xv(v+xv)=a1+v2+vxv=a1+v2

Separable.

dv1+v2=axdx

Integrating

arcsinh(v)=alnx+Cv=sinh(Calnx)

Since y=xv then

y=xsinh(Calnx)

Verification

ode:=x*diff(y(x),x)=-a*sqrt(x^2+y(x)^2)+y(x); 
y0:=x*sinh(_C1-a*ln(x)); 
odetest(y(x)=y0,ode) assuming x >=0; 
0