\[ y'(x)=\frac {3 x^4 y(x)-6 x^3 y(x)+3 x^2 y(x)^2+x^2 y(x)+x^6-3 x^5+x^4+2 x^3-3 x^2-3 x y(x)^2+x y(x)+y(x)^3+x}{x \left (x^2+y(x)-x+1\right )} \] ✓ Mathematica : cpu = 0.208518 (sec), leaf count = 76
\[\left \{\left \{y(x)\to -x^2+x+\frac {1}{x \left (\frac {1}{x}-\frac {1}{x \sqrt {-2 \log (x)+c_1}}\right )}-1\right \},\left \{y(x)\to -x^2+x+\frac {1}{x \left (\frac {1}{x}+\frac {1}{x \sqrt {-2 \log (x)+c_1}}\right )}-1\right \}\right \}\] ✓ Maple : cpu = 0.12 (sec), leaf count = 81
\[ \left \{ y \left ( x \right ) ={ \left ( \left ( -{x}^{2}+x \right ) \sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }-{x}^{2}+x-1 \right ) \left ( 1+\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) } \right ) ^{-1}},y \left ( x \right ) ={ \left ( \left ( -{x}^{2}+x \right ) \sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }+{x}^{2}-x+1 \right ) \left ( -1+\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) } \right ) ^{-1}} \right \} \]