\[ y'(x)=\frac {2 a x}{-24 a^2 x^2 y(x)^4-16 a^2 x^2 y(x)^2+96 a^3 x y(x)^2+32 a^3 x-128 a^4+2 a x^3 y(x)^6+2 a x^3 y(x)^4+2 a x^3-x^3 y(x)} \] ✓ Mathematica : cpu = 1.2911 (sec), leaf count = 201
\[\text {Solve}\left [-\text {RootSum}\left [12 \text {$\#$1}^2 a y(x)^4+8 \text {$\#$1}^2 a y(x)^2-\text {$\#$1}^3 y(x)^6-\text {$\#$1}^3 y(x)^4-\text {$\#$1}^3-48 \text {$\#$1} a^2 y(x)^2-16 \text {$\#$1} a^2+64 a^3\& ,\frac {\text {$\#$1} \log (x-\text {$\#$1})}{3 \text {$\#$1}^2 y(x)^6+3 \text {$\#$1}^2 y(x)^4+3 \text {$\#$1}^2-24 \text {$\#$1} a y(x)^4-16 \text {$\#$1} a y(x)^2+48 a^2 y(x)^2+16 a^2}\& \right ]-\frac {\text {RootSum}\left [\text {$\#$1}^3+\text {$\#$1}^2+1\& ,\frac {\log \left (y(x)^2-\text {$\#$1}\right )}{3 \text {$\#$1}^2+2 \text {$\#$1}}\& \right ]}{4 a}+y(x)=c_1,y(x)\right ]\] ✗ Maple : cpu = 0. (sec), leaf count = 0 , could not solve
dsolve(diff(y(x),x) = 2*a*x/(-x^3*y(x)+2*a*x^3+2*a*y(x)^4*x^3-16*y(x)^2*a^2*x^2+32*a^3*x+2*a*y(x)^6*x^3-24*y(x)^4*a^2*x^2+96*y(x)^2*x*a^3-128*a^4),y(x))