\[ y'(x)=\frac {e^x}{e^{-x} y(x)+1} \] ✓ Mathematica : cpu = 0.142397 (sec), leaf count = 65
\[\text {Solve}\left [\frac {1}{2} \log \left (-e^{-2 x} y(x)^2-e^{-x} y(x)+1\right )+x=\frac {\tanh ^{-1}\left (\frac {y(x)+3 e^x}{\sqrt {5} \left (y(x)+e^x\right )}\right )}{\sqrt {5}}+c_1,y(x)\right ]\] ✓ Maple : cpu = 1.093 (sec), leaf count = 54
\[ \left \{ x-{\frac {\sqrt {5}}{5}{\it Artanh} \left ( {\frac {2\,y \left ( x \right ) \sqrt {5}{{\rm e}^{-x}}}{5}}+{\frac {\sqrt {5}}{5}} \right ) }+{\frac {\ln \left ( \left ( y \left ( x \right ) \right ) ^{2} \left ( {{\rm e}^{-x}} \right ) ^{2}+y \left ( x \right ) {{\rm e}^{-x}}-1 \right ) }{2}}-{\it \_C1}=0 \right \} \]