\[ x^2 y'(x)^2-y(x)^4+y(x)^2=0 \] ✓ Mathematica : cpu = 0.045015 (sec), leaf count = 81
\[\left \{\left \{y(x)\to -\sqrt {1+\tan ^2(-\log (x)+c_1)}\right \},\left \{y(x)\to \sqrt {1+\tan ^2(-\log (x)+c_1)}\right \},\left \{y(x)\to -\sqrt {1+\tan ^2(\log (x)+c_1)}\right \},\left \{y(x)\to \sqrt {1+\tan ^2(\log (x)+c_1)}\right \}\right \}\] ✓ Maple : cpu = 0.343 (sec), leaf count = 62
\[ \left \{ y \left ( x \right ) =-1,y \left ( x \right ) =1,y \left ( x \right ) ={\frac {1}{\tan \left ( -\ln \left ( x \right ) +{\it \_C1} \right ) }\sqrt { \left ( \tan \left ( -\ln \left ( x \right ) +{\it \_C1} \right ) \right ) ^{2}+1}},y \left ( x \right ) =-{\frac {1}{\tan \left ( -\ln \left ( x \right ) +{\it \_C1} \right ) }\sqrt { \left ( \tan \left ( -\ln \left ( x \right ) +{\it \_C1} \right ) \right ) ^{2}+1}} \right \} \]