\[ \left \{x'(t)=6 x(t)-72 y(t)+44 z(t),y'(t)=4 x(t)-4 y(t)+26 z(t),z'(t)=6 x(t)-63 y(t)+38 z(t)\right \} \] ✓ Mathematica : cpu = 0.0807017 (sec), leaf count = 25202 \[ \text {Too large to display} \] ✓ Maple : cpu = 0.323 (sec), leaf count = 1285
\[ \left \{ \left \{ x \left ( t \right ) ={\it \_C2}\,{{\rm e}^{{\frac { \left ( -3542+ \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}+80\,\sqrt [3]{263474+18\,\sqrt {351406311}} \right ) t}{6\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}}\sin \left ( {\frac {\sqrt {3} \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}+3542 \right ) t\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{1580844+108\,\sqrt {351406311}}} \right ) +{\it \_C3}\,{{\rm e}^{{\frac { \left ( -3542+ \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}+80\,\sqrt [3]{263474+18\,\sqrt {351406311}} \right ) t}{6\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}}\cos \left ( {\frac {\sqrt {3} \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}+3542 \right ) t\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{1580844+108\,\sqrt {351406311}}} \right ) +{\it \_C1}\,{{\rm e}^{-{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}-40\,\sqrt [3]{263474+18\,\sqrt {351406311}}-3542 \right ) t}{3\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}},y \left ( t \right ) =-404352\,{\frac {1}{ \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3} \left ( 73329029784+5009688\,\sqrt {351406311} \right ) } \left ( \left ( {\frac {324731\,{\it \_C2}\, \left ( {\frac {3\,\sqrt {117135437}}{29521}}+\sqrt {3} \right ) \sqrt [3]{ \left ( 91637096720+4742532\,\sqrt {351406311} \right ) \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{22464}}-{\frac {869\,{\it \_C3}\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{312}}-{\frac {1771\,{\it \_C3}\, \left ( {\frac {131737}{9}}+\sqrt {351406311} \right ) \sqrt [3]{263474+18\,\sqrt {351406311}}}{27}}-{\frac {11\,{\it \_C3}\, \left ( {\frac {131737}{9}}+\sqrt {351406311} \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}}{44928}}-{\frac {114479453\,{\it \_C3}\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}}{2808}}+{\frac {131737\,{\it \_C2}\,\sqrt {117135437}}{9}}+{\frac {297165606013\,\sqrt {3}{\it \_C2}}{11232}}+{\frac {75104333\,{\it \_C3}\,\sqrt {351406311}}{11232}}+{\frac {2255749\,{\it \_C2}\,\sqrt {1054218933}}{1248}}+{\it \_C2}\,\sqrt {41162131803542907}+{\frac {1612830834397\,{\it \_C3}}{11232}} \right ) {{\rm e}^{1/6\,{\frac { \left ( -3542+ \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}+80\,\sqrt [3]{263474+18\,\sqrt {351406311}} \right ) t}{\sqrt [3]{263474+18\,\sqrt {351406311}}}}}}\cos \left ( {\frac {\sqrt {3} \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}+3542 \right ) t\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{1580844+108\,\sqrt {351406311}}} \right ) -{{\rm e}^{1/6\,{\frac { \left ( -3542+ \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}+80\,\sqrt [3]{263474+18\,\sqrt {351406311}} \right ) t}{\sqrt [3]{263474+18\,\sqrt {351406311}}}}}} \left ( {\frac {324731\,{\it \_C3}\, \left ( {\frac {3\,\sqrt {117135437}}{29521}}+\sqrt {3} \right ) \sqrt [3]{ \left ( 91637096720+4742532\,\sqrt {351406311} \right ) \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{22464}}+{\frac {869\,{\it \_C2}\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{312}}+{\frac {1771\,{\it \_C2}\, \left ( {\frac {131737}{9}}+\sqrt {351406311} \right ) \sqrt [3]{263474+18\,\sqrt {351406311}}}{27}}+{\frac {11\,{\it \_C2}\, \left ( {\frac {131737}{9}}+\sqrt {351406311} \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}}{44928}}+{\it \_C3}\,\sqrt {41162131803542907}+{\frac {114479453\,{\it \_C2}\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}}{2808}}-{\frac {75104333\,{\it \_C2}\,\sqrt {351406311}}{11232}}+{\frac {297165606013\,\sqrt {3}{\it \_C3}}{11232}}+{\frac {131737\,{\it \_C3}\,\sqrt {117135437}}{9}}+{\frac {2255749\,{\it \_C3}\,\sqrt {1054218933}}{1248}}-{\frac {1612830834397\,{\it \_C2}}{11232}} \right ) \sin \left ( {\frac {\sqrt {3} \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}+3542 \right ) t\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{1580844+108\,\sqrt {351406311}}} \right ) +{\frac { \left ( -{\frac {7821\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{104}}+3542\, \left ( {\frac {131737}{9}}+\sqrt {351406311} \right ) \sqrt [3]{263474+18\,\sqrt {351406311}}+3542\, \left ( {\frac {\sqrt {351406311}}{267904}}+{\frac {131737}{2411136}} \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}-{\frac {114479453\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}}{104}}-{\frac {75104333\,\sqrt {351406311}}{208}}-{\frac {1612830834397}{208}} \right ) {\it \_C1}}{27}{{\rm e}^{-1/3\,{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}-40\,\sqrt [3]{263474+18\,\sqrt {351406311}}-3542 \right ) t}{\sqrt [3]{263474+18\,\sqrt {351406311}}}}}}} \right ) },z \left ( t \right ) =20169\,{\frac {1}{ \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3} \left ( 4073834988+278316\,\sqrt {351406311} \right ) } \left ( {{\rm e}^{1/6\,{\frac { \left ( -3542+ \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}+80\,\sqrt [3]{263474+18\,\sqrt {351406311}} \right ) t}{\sqrt [3]{263474+18\,\sqrt {351406311}}}}}} \left ( -{\frac {38827\,{\it \_C2}\, \left ( {\frac {18\,\sqrt {117135437}}{38827}}+\sqrt {3} \right ) \sqrt [3]{ \left ( 91637096720+4742532\,\sqrt {351406311} \right ) \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{6723}}+{\frac {5510\,{\it \_C3}\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{747}}-{\frac {1771\,{\it \_C3}\, \left ( {\frac {131737}{9}}+\sqrt {351406311} \right ) \sqrt [3]{263474+18\,\sqrt {351406311}}}{27}}+{\frac {{\it \_C3}\, \left ( {\frac {131737}{9}}+\sqrt {351406311} \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}}{2241}}+{\frac {725870870\,{\it \_C3}\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}}{6723}}+{\frac {131737\,{\it \_C2}\,\sqrt {117135437}}{9}}+{\frac {1031058732365\,\sqrt {3}{\it \_C2}}{6723}}+{\frac {34414106\,{\it \_C3}\,\sqrt {351406311}}{2241}}+{\frac {7826645\,{\it \_C2}\,\sqrt {1054218933}}{747}}+{\it \_C2}\,\sqrt {41162131803542907}+{\frac {1818560275316\,{\it \_C3}}{6723}} \right ) \cos \left ( {\frac {\sqrt {3} \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}+3542 \right ) t\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{1580844+108\,\sqrt {351406311}}} \right ) -{{\rm e}^{1/6\,{\frac { \left ( -3542+ \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}+80\,\sqrt [3]{263474+18\,\sqrt {351406311}} \right ) t}{\sqrt [3]{263474+18\,\sqrt {351406311}}}}}} \left ( -{\frac {38827\,{\it \_C3}\, \left ( {\frac {18\,\sqrt {117135437}}{38827}}+\sqrt {3} \right ) \sqrt [3]{ \left ( 91637096720+4742532\,\sqrt {351406311} \right ) \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{6723}}-{\frac {5510\,{\it \_C2}\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{747}}+{\frac {1771\,{\it \_C2}\, \left ( {\frac {131737}{9}}+\sqrt {351406311} \right ) \sqrt [3]{263474+18\,\sqrt {351406311}}}{27}}-{\frac {{\it \_C2}\, \left ( {\frac {131737}{9}}+\sqrt {351406311} \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}}{2241}}+{\it \_C3}\,\sqrt {41162131803542907}-{\frac {725870870\,{\it \_C2}\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}}{6723}}-{\frac {34414106\,{\it \_C2}\,\sqrt {351406311}}{2241}}+{\frac {1031058732365\,\sqrt {3}{\it \_C3}}{6723}}+{\frac {131737\,{\it \_C3}\,\sqrt {117135437}}{9}}+{\frac {7826645\,{\it \_C3}\,\sqrt {1054218933}}{747}}-{\frac {1818560275316\,{\it \_C2}}{6723}} \right ) \sin \left ( {\frac {\sqrt {3} \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}+3542 \right ) t\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{1580844+108\,\sqrt {351406311}}} \right ) +{\frac { \left ( {\frac {16530\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}}{83}}+3542\, \left ( {\frac {131737}{9}}+\sqrt {351406311} \right ) \sqrt [3]{263474+18\,\sqrt {351406311}}+3542\, \left ( -{\frac {\sqrt {351406311}}{146993}}-{\frac {131737}{1322937}} \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}+{\frac {725870870\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}}{249}}-{\frac {68828212\,\sqrt {351406311}}{83}}-{\frac {3637120550632}{249}} \right ) {\it \_C1}}{27}{{\rm e}^{-1/3\,{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}-40\,\sqrt [3]{263474+18\,\sqrt {351406311}}-3542 \right ) t}{\sqrt [3]{263474+18\,\sqrt {351406311}}}}}}} \right ) } \right \} \right \} \]