\[ -x^2 y'(x)^2+2 y'(x)+x y''(x)+y(x)^2=0 \] ✓ Mathematica : cpu = 0.417618 (sec), leaf count = 160
\[\text {Solve}\left [\int _1^{y(x)}-\frac {x}{e^{x K[1]} c_1+2 x K[1]+1}dK[1]-\int _1^x\left (\int _1^{y(x)}\left (\frac {\left (e^{K[1] K[2]} c_1 K[1]+2 K[1]\right ) K[2]}{\left (e^{K[1] K[2]} c_1+2 K[1] K[2]+1\right ){}^2}-\frac {1}{e^{K[1] K[2]} c_1+2 K[1] K[2]+1}\right )dK[1]-\frac {e^{K[2] y(x)} c_1+K[2] y(x)+1}{K[2] \left (e^{K[2] y(x)} c_1+2 K[2] y(x)+1\right )}\right )dK[2]=c_2,y(x)\right ]\] ✓ Maple : cpu = 0.39 (sec), leaf count = 32
\[ \left \{ y \left ( x \right ) ={\frac {1}{x}{\it RootOf} \left ( -\ln \left ( x \right ) +{\it \_C2}+\int ^{{\it \_Z}}\!- \left ( {{\rm e}^{{\it \_f}}}{\it \_C1}-2\,{\it \_f}-1 \right ) ^{-1}{d{\it \_f}} \right ) } \right \} \]