The expressions returned by Maple VR5 for the partial derivatives of
JacobiSN(z,k), JacobiCN(z,k)
and JacobiDN(z,k)
with respect to k are not
correct for all values of z. The reason is that they contain the subexpression
EllipticE(JacobiSN(z, k), k)
instead of the integral int(JacobiDN(v,k)^2,v=0..z)
.
While it is true that both are equal for -EllipticK(k) <= z <= EllipticK(k)
, they are
not in general equal for z outside this interval.
The example below illustrates the problem. The function d1 is Maple’s expression, d2 is the
correct expression using the integral given above, and d3 is a difference quotient
approximation to the partial derivative. In the first numerical comparison, z is less than
EllipticK(k) (1.6<1.68...)
, but z is greater than EllipticK(k)
in the other two. In the
final comparison, both the sign and order of magnitude of Maple’s expression are
incorrect.
|\^/| Maple V Release 5 (WMI Campus Wide License) ._|\| |/|_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights \ MAPLE / reserved. Maple and Maple V are registered trademarks of <____ ____> Waterloo Maple Inc. | Type ? for help. > d1:=unapply(diff(JacobiSN(z,k),k),z,k): > d2:=(z,k)->k/(1-k^2)*JacobiSN(z,k)-k/(1-k^2)*JacobiSN(z,k)^3 > +z/k*JacobiCN(z,k)*JacobiDN(z,k) > -1/k/(1-k^2)*JacobiCN(z,k)*JacobiDN(z,k)*int(JacobiDN(v,k)^2,v=0..z): > d3:=(z,k)->(JacobiSN(z,k+1e-10)-JacobiSN(z,k))/1e-10: > Digits:=50: > EllipticK(0.5); 1.6857503548125960428712036577990769895008008941411 > zk:=1.6,0.5: d1(zk), evalf(d2(zk)), d3(zk); -.03118216366846836883782434139289735504055016301907, -.03118216366846836883782434139289735504055016301903, -.0311821636805583075554137524327632560315 > zk:=1.7,0.5: d1(zk), evalf(d2(zk)), d3(zk); .005282011499481807709953789681659890276144429069717, .005891184123212836060745180249782058869208078728551, .0058911841124536887421084292997717937994 > zk:=10.0,0.5: d1(zk), evalf(d2(zk)), d3(zk); -19.459115391501625785648272200645954534230450114114, 3.223614644063210632808934334083732420054336805507, 3.2236146445474151176211871239861660835524
See also: Bug in derivative of JacobiDN