What’s going on here?
>q:=int(exp(I*a*t)/(t^2+b^2),t=-infinity..infinity); q := 0 > qr:=int(cos(a*t)/(t^2+b^2),t=-infinity..infinity); signum(a) Pi sinh(b a) qr := - ---------------------- b
Why doesn’t Maple return the second result for the first integral?
Even more curious (?)
> q:=int(cos(a*t)/(t^2+b^2),t=-infinity..infinity); signum(a~) Pi sinh(b a~) q := - ------------------------ b > simplify( subs(a=5,b=3,%) ); - 1/3 Pi sinh(15) > q:=int(cos(5*t)/(t^2+3^2),t=-infinity..infinity); q := - 1/3 Pi sinh(15) + 1/3 Pi cosh(15)
You can try this:
>q:=Int(exp(I*a*t)/(t^2+b^2),t=-infinity..infinity); infinity / | exp(I a t) q := | ---------- dt | 2 2 / t + b -infinity > q:=map(evalc,q); infinity / | cos(t a) I sin(t a) q := | -------- + ---------- dt | 2 2 2 2 / t + b t + b -infinity > value(%); (-1 - I) Pi sinh(b a) signum(a) ------------------------------- b