7.77 bug in int/defDirac (5.5.96)

7.77.1 Gerhard Hejc

7.77.1 Gerhard Hejc

I found the following bug in the code of the procedure "int/defDirac":

        ... 
        if type(f,`*`) then 
            for z in f do 
                if type(z,function) and op(0,z) = Dirac then 
                    argument := op(1,z); 
                    if nops(z) = 1 and type(argument,linear(x)) then 
                        argument := expand(argument); 
                        c0 := -coeff(argument,x,0)/coeff(argument,x,1); 
                        s1 := signum(c0-a); 
                        s2 := signum(b-c0); 
                        F := subs(z = 1,f); 
                        if b = infinity and a = -infinity or 
                            member(s1,{0,1}) and b = infinity or 
                            member(s2,{0,1}) and a = -infinity or 
                            member(s2,{0,1}) and member(s1,{0,1}) then 
                            ans := traperror(eval(subs(x = c0,F))); 
                            if lasterror = ans then 
                                ans := traperror(limit(F,x = c0)); 
                                if lasterror = ans then RETURN('FAIL') 
                                else RETURN(ans/abs(coeff(argument,x,1))) 
                                fi 
                            else RETURN(ans/abs(coeff(argument,x,1))) 
                            fi 
                        elif s1 = -1 and b = infinity or 
                            s2 = -1 and a = -infinity or s2 = -1 or s1 = -1 
                             then 
                            RETURN(0) 
                        else RETURN('FAIL') 
                        fi 
                    elif nops(z) = 2 and type(argument,integer) and 
                        1 <= argument and type(op(2,z),linear(x)) then 
                        argument := expand(op(2,z)); 
                        c0 := -coeff(argument,x,0)/coeff(argument,x,1); 
                        s1 := signum(c0-a); 
                        s2 := signum(b-c0); 
# 
# old code: 
# F := (-1)^op(1,z)*diff(subs(z = 1,f),x $ op(1,z)); 
# 
# new code: 
# 
                        F := (-1/coeff(argument,x,1))^op(1,z)* 
                                        diff(subs(z = 1,f),x $ op(1,z)); 
# 
                       if b = infinity and a = -infinity or 
                            member(s1,{0,1}) and b = infinity or 
                            member(s2,{0,1}) and a = -infinity or 
                            member(s2,{0,1}) and member(s1,{0,1}) then 
                            ans := traperror(eval(subs(x = c0,F))); 
                            if lasterror = ans then 
                                ans := traperror(limit(F,x = c0)); 
                                if lasterror = ans then RETURN('FAIL') 
                                else RETURN(ans/abs(coeff(argument,x,1))) 
                                fi 
                            else RETURN(ans/abs(coeff(argument,x,1))) 
                            fi 
                        elif s1 = -1 and b = infinity or 
                            s2 = -1 and a = -infinity or s2 = -1 or s1 = -1 
                             then 
                            RETURN(0) 
                        else RETURN('FAIL') 
                        fi 
                    else RETURN('FAIL') 
                    fi 
                fi 
            od 
        ...
 

This bug causes a lot of strange results when integrating over Dirac functions.

The code hasn’t changed up to Maple 7. For you sent no example of the bug, I can’t decide if the bug is still present. (U. Klein)