When using Maple V and Maple 6 I am recieving two different answers when using the int() function with a diff() inside of it. The entered lines are exactly the same. A book of mine gives the answer shown by Maple 6, but I have never recieved any different any between the 2 versions when using int() or diff() before.
Where is the problem, or is it just a special situation?
Maple V:
>f:=x->x^3; 3 f := x -> x >int(sqrt(1+(diff(f(x),x))^2),x=0..4); evalf(%); 4/3 sqrt(2305) + 2/3 EllipticK(1/2 sqrt(2)) 24 - 1/3 EllipticF(---, 1/2 sqrt(2)) 145 65.19438187
Maple 6:
>f:=x->x^3; 3 f := x -> x >int(sqrt(1+(diff(f(x),x))^2),x=0..4); evalf(%); 4/3 sqrt(2305) + 2/9 sqrt(3) EllipticK(1/2 sqrt(2)) - 1/9 sqrt(3) EllipticF(8/49 sqrt(3), 1/2 sqrt(2)) 64.67196791
Maple 6 is correct here. It’s a bug in previous releases, which has now been corrected. To explore it further:
> assume(P > 4, P < 6); > JP:= int(sqrt(1+(diff(f(x),x))^2),x=0..P);
Release 5.1 has
JP := 1/3 P sqrt(1 + 9 P ) + 2/3 EllipticK(1/2 sqrt(2)) - 1/3 P EllipticF(6 --------, 1/2 sqrt(2)) 2 9 P + 1
But:
> simplify(diff(JP, P) - sqrt(1+diff(f(x),x))^2)); 4 4 -sqrt(81 P + 1) + 3 sqrt(1 + 9 P ) 2/3 ----------------------------------- 4 4 sqrt(1 + 9 P ) sqrt(81 P + 1)
This should be 0.
Maple 6 has
4 JP := 1/3 P sqrt(1 + 9 P ) + 2/9 sqrt(3) EllipticK(1/2 sqrt(2)) sqrt(3) P - 1/9 sqrt(3) EllipticF(2 ---------, 1/2 sqrt(2)) 2 3 P + 1 > simplify(diff(JP, P) - sqrt(1+diff(f(x),x))^2)); 0