Maple is giving the wrong answer using elliptic integrals.
> evalf(Int(sqrt((x^2+1)/(x+2)), x=-1..5)); 7.277500982 > evalf(int(sqrt((x^2+1)/(x+2)), x=-1..5)); 14.18222461 + 4.701625434 I
This is the numeric result using DERIVE. 7.2775009819508996444
In MapleVr5.1
the results were still identical, but since Maple6 they are different:
> i1:=evalf(Int(sqrt((x^2+1)/(x+2)), x=-1..5)); i1 := 7.277500982 > i2:=int(sqrt((x^2+1)/(x+2)), x=-1..5); i2 := 2/3 sqrt(182) - 4/1365 I sqrt(182) sqrt(2 - 10 I) sqrt(70 + 35 I) sqrt(2) sqrt(1 + 5 I) EllipticE(1/2 sqrt(2 - 10 I), %1) + 1/273 I sqrt(182) sqrt(2 - 10 I) sqrt(70 + 35 I) sqrt(2) sqrt(1 + 5 I) EllipticF(1/2 sqrt(2 - 10 I), %1) - 2/1365 sqrt(182) sqrt(2 - 10 I) sqrt(70 + 35 I) sqrt(2) sqrt(1 + 5 I) EllipticE(1/2 sqrt(2 - 10 I), %1) - 2/3 sqrt(2) + 8/15 I sqrt(2 + 2 I) sqrt(10 + 5 I) sqrt(1 - I) EllipticE(1/2 sqrt(2 + 2 I), %1) - 2/3 I sqrt(2 + 2 I) sqrt(10 + 5 I) sqrt(1 - I) EllipticF(1/2 sqrt(2 + 2 I), %1) + 4/15 sqrt(2 + 2 I) sqrt(10 + 5 I) sqrt(1 - I) EllipticE(1/2 sqrt(2 + 2 I), %1) %1 := 1/5 sqrt(10 - 20 I) > evalf(%); -8 7.277500973 + .3 10 I > interface(version); Maple Worksheet Interface, Release 5.1, SUN SPARC SOLARIS, Jan 7\ 1999 > i2:=int(sqrt((x^2+1)/(x+2)), x=-1..5); i2 := -2/6825 I sqrt(-45 - 35 I) sqrt(-45 + 35 I) sqrt(70 + 35 I) sqrt(182) EllipticF(1/5 sqrt(70 + 35 I), %1) + 2/3 sqrt(182) + 4/6825 sqrt(-45 - 35 I) sqrt(-45 + 35 I) sqrt(70 + 35 I) sqrt(182) EllipticE(1/5 sqrt(70 + 35 I), %1) - 2/3 sqrt(2) - 4/75 sqrt(15 - 5 I) sqrt(15 + 5 I) sqrt(10 + 5 I) sqrt(2) EllipticE(1/5 sqrt(10 + 5 I), %1) + 2/75 I sqrt(15 - 5 I) sqrt(15 + 5 I) sqrt(10 + 5 I) sqrt(2) EllipticF(1/5 sqrt(10 + 5 I), %1) %1 := 2/5 sqrt(5) - 1/5 I sqrt(5) > evalf(%); 14.18222461 + 4.701625434 I > interface(version); Maple Worksheet Interface, Maple 6.01, SUN SPARC SOLARIS, June 9 2000 Build ID 79514
Until now I told my students it is good to use different CAS to test if an integral is right. Now I can even tell them use different Maple versions to see if the results can be correct ?
It may be related to choice of square-roots...
> evalf(int(sqrt((x^2+1)/(x+2)),x=-1..5)); 14.18222460 + 4.701625434 I > evalf(int(sqrt(x^2+1)/sqrt(x+2),x=-1..5)); 7.277500972