home

UP

PDF

Selection of Math fonts and usage status with tex4ht

Nasser M. Abbasi

January 28, 2024   Compiled on January 28, 2024 at 3:27am  [public]

Contents

1 mathpazo,eulervm
2 mathpazo,mathabx
3 kpfonts
4 newtxtext,newtxmath
5 libertine,newtxmath
6 stix
7 lmodern
8 mathpazo
9 txfonts
10 XCharter
11 charter with mathdesign
12 math,anttor
13 condensed,math,anttor
14 Light,math,anttor
15 arev
16 lf,Baskervaldx
17 boisik

1 mathpazo,eulervm

1.1 Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[tracking]{microtype} 
\usepackage[sc,osf]{mathpazo}%With old-style figures and real smallcaps. 
\usepackage[euler-digits,small]{eulervm} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

1.2 PDF Output

PDF

pict

1.3 HTML Output

HTML

1.4 status

  1. lualatex: ok
  2. pdflatex: ok
  3. tex4ht: ok, both .png and .svg math

1.5 reference

Math Code fragment thanks to Answer by mforbes at Tex.stackexchange

2 mathpazo,mathabx

2.1 Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} %must be before next line 
\usepackage{mathpazo,mathabx} 
\DeclareMathOperator{\Res}{Res} 
\usepackage[english]{babel} 
\usepackage{blindtext} 
 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

2.2 PDF Output

PDF

pict

2.3 HTML Output

HTML

2.4 status

  1. lualatex: ok
  2. pdflatex: ok
  3. tex4ht: ok, both .png and .svg math

2.5 reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

3 kpfonts

3.1 Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{kpfonts} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

3.2 PDF Output

PDF

pict

3.3 HTML Output

HTML

3.4 status

  1. lualatex: ok
  2. pdflatex: ok
  3. tex4ht: No.

3.5 reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

4 newtxtext,newtxmath

4.1 Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{newtxtext,newtxmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

4.2 PDF Output

PDF

pict

4.3 HTML Output

HTML

4.4 status

  1. lualatex: ok
  2. pdflatex: ok
  3. tex4ht: No. Drops the  fi  letters in text. But Math looks ok.

4.5 reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

5 libertine,newtxmath

5.1 Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage[libertine]{newtxmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

5.2 PDF Output

PDF

pict

5.3 HTML Output

HTML

5.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Missing some fonts.

5.5 reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

6 stix

6.1 Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\usepackage{stix} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

6.2 PDF Output

PDF

pict

6.3 HTML Output

HTML

6.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. Drops the  fi  letters in text. But Math looks ok.

6.5 reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

7 lmodern

7.1 Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\usepackage{lmodern} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

7.2 PDF Output

PDF

pict

7.3 HTML Output

HTML

7.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

7.5 reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

8 mathpazo

8.1 Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\usepackage{mathpazo} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

8.2 PDF Output

PDF

pict

8.3 HTML Output

HTML

8.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

8.5 reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

9 txfonts

9.1 Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\usepackage{txfonts} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

9.2 PDF Output

PDF

pict

9.3 HTML Output

HTML

9.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No., changed one \(f\) to an up arrow in text.

9.5 reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

10 XCharter

10.1 Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\usepackage{XCharter} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

10.2 PDF Output

PDF

pict

10.3 HTML Output

HTML

10.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. Compile error in latest texlive.

10.5 reference

Math Code fragment thanks to Tex.Stackexchange

11 charter with mathdesign

11.1 Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\usepackage[charter]{mathdesign} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

11.2 PDF Output

PDF

pict

11.3 HTML Output

HTML

11.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. All text is mangled. Math looks ok.

11.5 reference

Math Code fragment thanks to Tex.Stackexchange

12 math,anttor

12.1 Latex file

\documentclass{article} 
\usepackage[math]{anttor} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

12.2 PDF Output

PDF

pict

12.3 HTML Output

HTML

12.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok.

12.5 reference

http://www.tug.dk/FontCatalogue/anttor/

13 condensed,math,anttor

13.1 Latex file

\documentclass{article} 
\usepackage[condensed,math]{anttor} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

13.2 PDF Output

PDF

pict

13.3 HTML Output

HTML

13.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

13.5 reference

http://www.tug.dk/FontCatalogue/anttor/

14 Light,math,anttor

14.1 Latex file

\documentclass{article} 
\usepackage[light,math]{anttor} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

14.2 PDF Output

PDF

pict

14.3 HTML Output

HTML

14.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

14.5 reference

http://www.tug.dk/FontCatalogue/anttor/

15 arev

15.1 Latex file

\documentclass{article} 
\usepackage[utf8]{inputenc} 
\usepackage{arev} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

15.2 PDF Output

PDF

pict

15.3 HTML Output

N/A did not compile.

15.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. Missing fonts, will not compile.

15.5 reference

http://www.tug.dk/FontCatalogue/anttor/

16 lf,Baskervaldx

16.1 Latex file

\documentclass{article} 
\usepackage[utf8]{inputenc} 
\usepackage{amsmath} 
\usepackage[lf]{Baskervaldx} % lining figures 
\usepackage[bigdelims,vvarbb]{newtxmath} % math italic letters from Nimbus Roman 
\usepackage[cal=boondoxo]{mathalfa} % mathcal from STIX, unslanted a bit 
\renewcommand*\oldstylenums[1]{\textosf{#1}} 
 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

16.2 PDF Output

PDF

pict

16.3 HTML Output

HTML

16.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: compiles, but text drops fi, but math looks ok.

16.5 reference

http://www.tug.dk/FontCatalogue/anttor/

17 boisik

17.1 Latex file

\documentclass{article} 
\usepackage{amsmath} 
%\usepackage{boisik} %causes problems 
\usepackage[OT1]{fontenc} 
 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

17.2 PDF Output

PDF

pict

17.3 HTML Output

HTML

17.4 status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: compiles, but text drops fi, but math looks ok.

17.5 reference

http://www.tug.dk/FontCatalogue/anttor/