Hence \(f\left ( x,y,y^{\prime }\right ) =2yy^{\prime }\). At \(x=0\) then \(f=4\) which is continuous. And \(f_{y}=2y^{\prime }\) which at \(x_{0}\) becomes \(4\). This is also continuous. And \(f_{y^{\prime }}=2y\) which at \(x_{0}\) becomes \(4\) which is also continuous. Hence solution exists and is unique on interval that contains \(x=0\). The solution can be found as follows
Let \(y^{\prime }=p\left ( y\right ) \) then \(y^{\prime \prime }=\frac {dp}{dx}=\frac {dp}{dy}\frac {dy}{dx}=\frac {dp}{dy}p\). The ode becomes
But at \(x=0\) we have \(y\left ( 0\right ) =1\) and \(y^{\prime }\left ( 0\right ) =p\left ( y\left ( 0\right ) \right ) =p\left ( 1\right ) =2\). This is the initial condition used for solving the above quadrature ode. Integrating the above gives
Applying IC \(p\left ( 1\right ) =2\) givesĀ
Hence \(p=y^{2}+1\). But \(y^{\prime }=p\) or \(y^{\prime }=y^{2}+1\). This is separable with initial conditions \(y\left ( 0\right ) =1\). Integrating gives
Applying IC
So \(c_{2}=\frac {\pi }{4}\). Hence the solution becomes