4.4 Nonlinear second order ode

4.4.1 Exact nonlinear second order ode \(F\left ( x,y,y^{\prime },y^{\prime \prime }\right ) =0\) (Approach 1)
4.4.2 Exact nonlinear second order ode \(F\left ( x,y,y^{\prime },y^{\prime \prime }\right ) =0\) (Approach 2)
4.4.3 nonlinear and not exact second order ode
4.4.4 ode is Integrable as given
4.4.5 ode can be made Integrable \(F\left ( x,y,y^{\prime \prime }\right ) =0\)
4.4.6 Solved using Mainardi Liouville method
4.4.7 nonlinear second order ode with missing \(x\) or missing \(y\left ( x\right ) \)
4.4.8 Higher degree second order ode