4.20.15 xy(x)y(x)2+(y(x)+x)y(x)+1=0

ODE
xy(x)y(x)2+(y(x)+x)y(x)+1=0 ODE Classification

[_quadrature]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 0.00559688 (sec), leaf count = 53

{{y(x)2c1x},{y(x)2c1x},{y(x)c1log(x)}}

Maple
cpu = 0.007 (sec), leaf count = 23

{(y(x))2_C1+2x=0,y(x)=ln(x)+_C1} Mathematica raw input

DSolve[1 + (x + y[x])*y'[x] + x*y[x]*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -(Sqrt[2]*Sqrt[-x + C[1]])}, {y[x] -> Sqrt[2]*Sqrt[-x + C[1]]}, {y[x] 
-> C[1] - Log[x]}}

Maple raw input

dsolve(x*y(x)*diff(y(x),x)^2+(x+y(x))*diff(y(x),x)+1 = 0, y(x),'implicit')

Maple raw output

y(x) = -ln(x)+_C1, y(x)^2-_C1+2*x = 0