4.20.6 \(y(x) y'(x)^2+\left (x-y(x)^2\right ) y'(x)-x y(x)=0\)

ODE
\[ y(x) y'(x)^2+\left (x-y(x)^2\right ) y'(x)-x y(x)=0 \] ODE Classification

[_quadrature]

Book solution method
No Missing Variables ODE, Solve for \(y'\)

Mathematica
cpu = 0.00619973 (sec), leaf count = 49

\[\left \{\left \{y(x)\to c_1 e^x\right \},\left \{y(x)\to -\sqrt {2 c_1-x^2}\right \},\left \{y(x)\to \sqrt {2 c_1-x^2}\right \}\right \}\]

Maple
cpu = 0.007 (sec), leaf count = 21

\[ \left \{ {x}^{2}+ \left ( y \left ( x \right ) \right ) ^{2}-{\it \_C1}=0,y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{x}} \right \} \] Mathematica raw input

DSolve[-(x*y[x]) + (x - y[x]^2)*y'[x] + y[x]*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> E^x*C[1]}, {y[x] -> -Sqrt[-x^2 + 2*C[1]]}, {y[x] -> Sqrt[-x^2 + 2*C[1]
]}}

Maple raw input

dsolve(y(x)*diff(y(x),x)^2+(x-y(x)^2)*diff(y(x),x)-x*y(x) = 0, y(x),'implicit')

Maple raw output

x^2+y(x)^2-_C1 = 0, y(x) = _C1*exp(x)