4.15.47 xy(x)(xy(x)tan(y(x)x))+y(x)(y(x)tan(y(x)x)+x)=0

ODE
xy(x)(xy(x)tan(y(x)x))+y(x)(y(x)tan(y(x)x)+x)=0 ODE Classification

[[_homogeneous, `class A`], _dAlembert]

Book solution method
Homogeneous equation

Mathematica
cpu = 0.0737839 (sec), leaf count = 27

Solve[c1+log(y(x)x)+log(cos(y(x)x))+2log(x)=0,y(x)]

Maple
cpu = 0.021 (sec), leaf count = 30

{12ln(cos(y(x)x))12ln(y(x)x)ln(x)_C1=0} Mathematica raw input

DSolve[y[x]*(x + Tan[y[x]/x]*y[x]) + x*(x - Tan[y[x]/x]*y[x])*y'[x] == 0,y[x],x]

Mathematica raw output

Solve[C[1] + 2*Log[x] + Log[Cos[y[x]/x]] + Log[y[x]/x] == 0, y[x]]

Maple raw input

dsolve(x*(x-y(x)*tan(y(x)/x))*diff(y(x),x)+(x+y(x)*tan(y(x)/x))*y(x) = 0, y(x),'implicit')

Maple raw output

-1/2*ln(cos(y(x)/x))-1/2*ln(y(x)/x)-ln(x)-_C1 = 0