4.14.44 xy(x)3y(x)=(1x2)(y(x)2+1)

ODE
xy(x)3y(x)=(1x2)(y(x)2+1) ODE Classification

[_separable]

Book solution method
Separable ODE, Neither variable missing

Mathematica
cpu = 0.0237565 (sec), leaf count = 61

{{y(x)W(e2c1+x21x2)1},{y(x)W(e2c1+x21x2)1}}

Maple
cpu = 0.01 (sec), leaf count = 29

{x22ln(x)+(y(x))22ln(1+(y(x))2)2+_C1=0} Mathematica raw input

DSolve[x*y[x]^3*y'[x] == (1 - x^2)*(1 + y[x]^2),y[x],x]

Mathematica raw output

{{y[x] -> -Sqrt[-1 - ProductLog[-(E^(-1 + x^2 - 2*C[1])/x^2)]]}, {y[x] -> Sqrt[-
1 - ProductLog[-(E^(-1 + x^2 - 2*C[1])/x^2)]]}}

Maple raw input

dsolve(x*y(x)^3*diff(y(x),x) = (-x^2+1)*(1+y(x)^2), y(x),'implicit')

Maple raw output

1/2*x^2-ln(x)+1/2*y(x)^2-1/2*ln(1+y(x)^2)+_C1 = 0