[[_homogeneous, `class A`], _rational, _dAlembert]
Book solution method
Exact equation, integrating factor
Mathematica ✓
cpu = 0.101282 (sec), leaf count = 878
Maple ✓
cpu = 0.023 (sec), leaf count = 45
DSolve[2*y[x]^3*y'[x] == x^3 - x*y[x]^2,y[x],x]
Mathematica raw output
{{y[x] -> -(Sqrt[-x^2 + x^4/(-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) - E^(12*C
[1])*x^6])^(1/3) + (-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) - E^(12*C[1])*x^6]
)^(1/3)]/Sqrt[2])}, {y[x] -> Sqrt[-x^2 + x^4/(-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(2
4*C[1]) - E^(12*C[1])*x^6])^(1/3) + (-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) -
E^(12*C[1])*x^6])^(1/3)]/Sqrt[2]}, {y[x] -> -Sqrt[(I*(I + Sqrt[3])*x^4 - 2*x^2*
(-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) - E^(12*C[1])*x^6])^(1/3) + (-1 - I*S
qrt[3])*(-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) - E^(12*C[1])*x^6])^(2/3))/(-
2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) - E^(12*C[1])*x^6])^(1/3)]/2}, {y[x] ->
Sqrt[(I*(I + Sqrt[3])*x^4 - 2*x^2*(-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) -
E^(12*C[1])*x^6])^(1/3) + (-1 - I*Sqrt[3])*(-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*
C[1]) - E^(12*C[1])*x^6])^(2/3))/(-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) - E^
(12*C[1])*x^6])^(1/3)]/2}, {y[x] -> -Sqrt[((-1 - I*Sqrt[3])*x^4 - 2*x^2*(-2*E^(1
2*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) - E^(12*C[1])*x^6])^(1/3) + I*(I + Sqrt[3])*(
-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) - E^(12*C[1])*x^6])^(2/3))/(-2*E^(12*C
[1]) + x^6 + 2*Sqrt[E^(24*C[1]) - E^(12*C[1])*x^6])^(1/3)]/2}, {y[x] -> Sqrt[((-
1 - I*Sqrt[3])*x^4 - 2*x^2*(-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) - E^(12*C[
1])*x^6])^(1/3) + I*(I + Sqrt[3])*(-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) - E
^(12*C[1])*x^6])^(2/3))/(-2*E^(12*C[1]) + x^6 + 2*Sqrt[E^(24*C[1]) - E^(12*C[1])
*x^6])^(1/3)]/2}}
Maple raw input
dsolve(2*y(x)^3*diff(y(x),x) = x^3-x*y(x)^2, y(x),'implicit')
Maple raw output
-1/6*ln((-x^2+2*y(x)^2)/x^2)-1/3*ln((x^2+y(x)^2)/x^2)-ln(x)-_C1 = 0