4.14.17 (1x2y(x)2)y(x)=y(x)2(xy(x)+1)

ODE
(1x2y(x)2)y(x)=y(x)2(xy(x)+1) ODE Classification

[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

Book solution method
Exact equation, integrating factor

Mathematica
cpu = 0.0385589 (sec), leaf count = 29

{{y(x)1x},{y(x)W(ec1x)x}}

Maple
cpu = 0.025 (sec), leaf count = 27

{x+ln(y(x))_C1y(x)=0,y(x)=x1} Mathematica raw input

DSolve[(1 - x^2*y[x]^2)*y'[x] == y[x]^2*(1 + x*y[x]),y[x],x]

Mathematica raw output

{{y[x] -> -x^(-1)}, {y[x] -> -(ProductLog[-(x/E^C[1])]/x)}}

Maple raw input

dsolve((1-x^2*y(x)^2)*diff(y(x),x) = (1+x*y(x))*y(x)^2, y(x),'implicit')

Maple raw output

y(x) = -1/x, x+(-ln(y(x))-_C1)/y(x) = 0