4.14.11 6xy(x)2y(x)+2y(x)3+x=0

ODE
6xy(x)2y(x)+2y(x)3+x=0 ODE Classification

[[_homogeneous, `class G`], _exact, _rational, _Bernoulli]

Book solution method
The Bernoulli ODE

Mathematica
cpu = 0.00777719 (sec), leaf count = 99

{{y(x)4c1x2322/3x3},{y(x)134c1x2322/3x3},{y(x)(1)2/34c1x2322/3x3}}

Maple
cpu = 0.004 (sec), leaf count = 17

{(y(x))3+x4_C1x=0} Mathematica raw input

DSolve[x + 2*y[x]^3 + 6*x*y[x]^2*y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (-x^2 + 4*C[1])^(1/3)/(2^(2/3)*x^(1/3))}, {y[x] -> -(((-1)^(1/3)*(-x^2
 + 4*C[1])^(1/3))/(2^(2/3)*x^(1/3)))}, {y[x] -> ((-1)^(2/3)*(-x^2 + 4*C[1])^(1/3
))/(2^(2/3)*x^(1/3))}}

Maple raw input

dsolve(6*x*y(x)^2*diff(y(x),x)+x+2*y(x)^3 = 0, y(x),'implicit')

Maple raw output

y(x)^3+1/4*x-1/x*_C1 = 0